Nova Publishers
My Account Nova Publishers Shopping Cart
HomeBooksSeriesJournalsReference CollectionseBooksInformationSalesImprintsFor Authors
            
  Top » Catalog » Books » Biology » Proteins » Protein Folding Chapters » My Account  |  Cart Contents  |  Checkout   
Quick Find
  
Use keywords to find the product you are looking for.
Advanced Search
What's New? more
Central Asia: Perspectives and Present Challenges
$144.00
Shopping Cart more
0 items
Information
Shipping & Returns
Privacy Notice
Conditions of Use
Contact Us
Notifications more
NotificationsNotify me of updates to The Relationship between Human MAT1A Mutations and Disease: A Folding and Association Problem? pp. 261-288
Tell A Friend
 
Tell someone you know about this product.
The Relationship between Human MAT1A Mutations and Disease: A Folding and Association Problem? pp. 261-288 $0.00
Authors:  (María A. Pajares, Claudia Pérez, Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Madrid, Spain, and others)
Abstract:
Methionine adenosyltransferases (MATs) are a family of highly conserved oligomers that catalyze the only known reaction for the synthesis of S-adenosylmethionine (AdoMet), the main cellular methyl donor. Their catalytic subunits exhibit a characteristic structure, organized in three domains formed by nonconsecutive stretches
of the sequence. The active sites locate at the interface between subunits in the dimer with amino acids of each monomer contributing to catalysis. Changes in activity, oligomerization level and expression have been detected in several hepatic diseases; the
knockout mouse for MAT1A spontaneously developing hepatocellular carcinoma (HCC). However, none of the patients with persistent hypermethioninemia caused by mutations in this gene exhibits hepatic problems, instead a few cases showing demyelination have
been described. This chapter discusses aspects related to the structural features of these enzymes and the impact that the mutations found in the human MAT1A gene may have in the final protein structure. The influence of the redox environment in MAT folding and
association is also analyzed, in light of the effects that drugs and metals that alter the GSH/GSSG ratio produce in the activity and association level. The recent report of the nuclear localization of the MAT I/III isoenzymes, along with their presence in tissues
other than liver opened the option to MAT moonlighting. The possibility exists that disease development is related not only to a decrease in AdoMet production, but also to the role of these particular isoenzymes in different subcellular compartments. Therefore, the influence of MAT1A mutations, especially those leading to protein truncations, on folding and subcellular localization is discussed, paying special attention to the Hazelwood’s hetero-oligomerization hypothesis to explain the demyelination process in
patients with persistent hypermethioninemia. 


Available Options:
Version:

  Open Access item.
  Click below PDF icon for free download.

  

This is an Open Access item. Click above PDF icon for free download.
Special Focus Titles
01.Violent Communication and Bullying in Early Childhood Education
02.Cultural Considerations in Intervention with Women and Children Exposed to Intimate Partner Violence
03.Chronic Disease and Disability: The Pediatric Lung
04.Fruit and Vegetable Consumption and Health: New Research
05.Fire and the Sword: Understanding the Impact and Challenge of Organized Islamism. Volume 2

Nova Science Publishers
© Copyright 2004 - 2019

The Relationship between Human MAT1A Mutations and Disease: A Folding and Association Problem? pp. 261-288